Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
NPJ Vaccines ; 8(1): 26, 2023 Feb 25.
Article in English | MEDLINE | ID: covidwho-2263084

ABSTRACT

Prospective population-based studies investigating associations between reactive symptoms following SARS-CoV-2 vaccination and serologic responses to vaccination are lacking. We therefore conducted a study in 9003 adults from the UK general population receiving SARS-CoV-2 vaccines as part of the national vaccination programme. Titres of combined IgG/IgA/IgM responses to SARS-CoV-2 spike (S) glycoprotein were determined in eluates of dried blood spots collected from all participants before and after vaccination. 4262 (47.3%) participants experienced systemic reactive symptoms after a first vaccine dose. Factors associating with lower risk of such symptoms included older age (aOR per additional 10 years of age 0.85, 95% CI: 0.81-0.90), male vs. female sex (0.59, 0.53-0.65) and receipt of an mRNA vaccine vs. ChAdOx1 nCoV-19 (0.29, 0.26-0.32 for BNT162b2; 0.06, 0.01-0.26 for mRNA-1273). Higher risk of such symptoms was associated with SARS-CoV-2 seropositivity and COVID-19 symptoms prior to vaccination (2.23, 1.78-2.81), but not with SARS-CoV-2 seropositivity in the absence of COVID-19 symptoms (0.94, 0.81-1.09). Presence vs. absence of self-reported anxiety or depression at enrolment associated with higher risk of such symptoms (1.24, 1.12-1.39). Post-vaccination anti-S titres were higher among participants who experienced reactive symptoms after vaccination vs. those who did not (P < 0.001). We conclude that factors influencing risk of systemic symptoms after SARS-CoV-2 vaccination include demographic characteristics, pre-vaccination SARS-CoV-2 serostatus and vaccine type. Participants experiencing reactive symptoms following SARS-CoV-2 vaccination had higher post-vaccination titres of IgG/A/M anti-S antibodies. Improved public understanding of the frequency of reactogenic symptoms and their positive association with vaccine immunogenicity could potentially increase vaccine uptake.

2.
Vaccines (Basel) ; 10(10)2022 Sep 23.
Article in English | MEDLINE | ID: covidwho-2044040

ABSTRACT

Antibody responses to SARS-CoV-2 vaccines vary for reasons that remain poorly understood. A range of sociodemographic, behavioural, clinical, pharmacologic and nutritional factors could explain these differences. To investigate this hypothesis, we tested for presence of combined IgG, IgA and IgM (IgGAM) anti-Spike antibodies before and after 2 doses of ChAdOx1 nCoV-19 (ChAdOx1, AstraZeneca) or BNT162b2 (Pfizer-BioNTech) in UK adults participating in a population-based longitudinal study who received their first dose of vaccine between December 2020 and July 2021. Information on sixty-six potential sociodemographic, behavioural, clinical, pharmacologic and nutritional determinants of serological response to vaccination was captured using serial online questionnaires. We used logistic regression to estimate multivariable-adjusted odds ratios (aORs) for associations between independent variables and risk of seronegativity following two vaccine doses. Additionally, percentage differences in antibody titres between groups were estimated in the sub-set of participants who were seropositive post-vaccination using linear regression. Anti-spike antibodies were undetectable in 378/9101 (4.2%) participants at a median of 8.6 weeks post second vaccine dose. Increased risk of post-vaccination seronegativity associated with administration of ChAdOx1 vs. BNT162b2 (adjusted odds ratio (aOR) 6.6, 95% CI 4.2-10.4), shorter interval between vaccine doses (aOR 1.6, 1.2-2.1, 6-10 vs. >10 weeks), poor vs. excellent general health (aOR 3.1, 1.4-7.0), immunodeficiency (aOR 6.5, 2.5-16.6) and immunosuppressant use (aOR 3.7, 2.4-5.7). Odds of seronegativity were lower for participants who were SARS-CoV-2 seropositive pre-vaccination (aOR 0.2, 0.0-0.6) and for those taking vitamin D supplements (aOR 0.7, 0.5-0.9). Serologic responses to vaccination did not associate with time of day of vaccine administration, lifestyle factors including tobacco smoking, alcohol intake and sleep, or use of anti-pyretics for management of reactive symptoms after vaccination. In a sub-set of 8727 individuals who were seropositive post-vaccination, lower antibody titres associated with administration of ChAdOx1 vs. BNT162b2 (43.4% lower, 41.8-44.8), longer duration between second vaccine dose and sampling (12.7% lower, 8.2-16.9, for 9-16 weeks vs. 2-4 weeks), shorter interval between vaccine doses (10.4% lower, 3.7-16.7, for <6 weeks vs. >10 weeks), receiving a second vaccine dose in October-December vs. April-June (47.7% lower, 11.4-69.1), older age (3.3% lower per 10-year increase in age, 2.1-4.6), and hypertension (4.1% lower, 1.1-6.9). Higher antibody titres associated with South Asian ethnicity (16.2% higher, 3.0-31.1, vs. White ethnicity) or Mixed/Multiple/Other ethnicity (11.8% higher, 2.9-21.6, vs. White ethnicity), higher body mass index (BMI; 2.9% higher, 0.2-5.7, for BMI 25-30 vs. <25 kg/m2) and pre-vaccination seropositivity for SARS-CoV-2 (105.1% higher, 94.1-116.6, for those seropositive and experienced COVID-19 symptoms vs. those who were seronegative pre-vaccination). In conclusion, we identify multiple determinants of antibody responses to SARS-CoV-2 vaccines, many of which are modifiable.

3.
BMJ ; 378: e071230, 2022 09 07.
Article in English | MEDLINE | ID: covidwho-2009215

ABSTRACT

OBJECTIVE: To determine the effect of population level implementation of a test-and-treat approach to correction of suboptimal vitamin D status (25-hydroxyvitamin D (25(OH)D) <75 nmol/L) on risk of all cause acute respiratory tract infection and covid 19. DESIGN: Phase 3 open label randomised controlled trial. SETTING: United Kingdom. PARTICIPANTS: 6200 people aged ≥16 years who were not taking vitamin D supplements at baseline. INTERVENTIONS: Offer of a postal finger prick test of blood 25(OH)D concentration with provision of a six month supply of lower dose vitamin D (800 IU/day, n=1550) or higher dose vitamin D (3200 IU/day, n=1550) to those with blood 25(OH)D concentration <75 nmol/L, compared with no offer of testing or supplementation (n=3100). Follow-up was for six months. MAIN OUTCOME MEASURES: The primary outcome was the proportion of participants with at least one swab test or doctor confirmed acute respiratory tract infection of any cause. A secondary outcome was the proportion of participants with swab test confirmed covid-19. Logistic regression was used to calculate odds ratios and associated 95% confidence intervals. The primary analysis was conducted by intention to treat. RESULTS: Of 3100 participants offered a vitamin D test, 2958 (95.4%) accepted and 2674 (86.3%) had 25(OH)D concentrations <75 nmol/L and received vitamin D supplements (n=1328 lower dose, n=1346 higher dose). Compared with 136/2949 (4.6%) participants in the no offer group, at least one acute respiratory tract infection of any cause occurred in 87/1515 (5.7%) in the lower dose group (odds ratio 1.26, 95% confidence interval 0.96 to 1.66) and 76/1515 (5.0%) in the higher dose group (1.09, 0.82 to 1.46). Compared with 78/2949 (2.6%) participants in the no offer group, 55/1515 (3.6%) developed covid-19 in the lower dose group (1.39, 0.98 to 1.97) and 45/1515 (3.0%) in the higher dose group (1.13, 0.78 to 1.63). CONCLUSIONS: Among people aged 16 years and older with a high baseline prevalence of suboptimal vitamin D status, implementation of a population level test-and-treat approach to vitamin D supplementation was not associated with a reduction in risk of all cause acute respiratory tract infection or covid-19. TRIAL REGISTRATION: ClinicalTrials.gov NCT04579640.


Subject(s)
COVID-19 , Respiratory Tract Infections , Vitamin D Deficiency , COVID-19/prevention & control , Cholecalciferol , Dietary Supplements , Double-Blind Method , Humans , Respiratory Tract Infections/drug therapy , Respiratory Tract Infections/epidemiology , Respiratory Tract Infections/prevention & control , Vitamin D/therapeutic use , Vitamin D Deficiency/diagnosis , Vitamin D Deficiency/drug therapy , Vitamins/therapeutic use
4.
BMC Med ; 20(1): 87, 2022 02 22.
Article in English | MEDLINE | ID: covidwho-1700554

ABSTRACT

BACKGROUND: Prospective population-based studies investigating multiple determinants of pre-vaccination antibody responses to SARS-CoV-2 are lacking. METHODS: We did a prospective population-based study in SARS-CoV-2 vaccine-naive UK adults recruited between May 1 and November 2, 2020, without a positive swab test result for SARS-CoV-2 prior to enrolment. Information on 88 potential sociodemographic, behavioural, nutritional, clinical and pharmacological risk factors was obtained through online questionnaires, and combined IgG/IgA/IgM responses to SARS-CoV-2 spike glycoprotein were determined in dried blood spots obtained between November 6, 2020, and April 18, 2021. We used logistic and linear regression to estimate adjusted odds ratios (aORs) and adjusted geometric mean ratios (aGMRs) for potential determinants of SARS-CoV-2 seropositivity (all participants) and antibody titres (seropositive participants only), respectively. RESULTS: Of 11,130 participants, 1696 (15.2%) were seropositive. Factors independently associated with  higher risk of SARS-CoV-2 seropositivity included frontline health/care occupation (aOR 1.86, 95% CI 1.48-2.33), international travel (1.20, 1.07-1.35), number of visits to shops and other indoor public places (≥ 5 vs. 0/week: 1.29, 1.06-1.57, P-trend = 0.01), body mass index (BMI) ≥ 25 vs. < 25 kg/m2 (1.24, 1.11-1.39), South Asian vs. White ethnicity (1.65, 1.10-2.49) and alcohol consumption ≥15 vs. 0 units/week (1.23, 1.04-1.46). Light physical exercise associated with  lower risk (0.80, 0.70-0.93, for ≥ 10 vs. 0-4 h/week). Among seropositive participants, higher titres of anti-Spike antibodies associated with factors including BMI ≥ 30 vs. < 25 kg/m2 (aGMR 1.10, 1.02-1.19), South Asian vs. White ethnicity (1.22, 1.04-1.44), frontline health/care occupation (1.24, 95% CI 1.11-1.39), international travel (1.11, 1.05-1.16) and number of visits to shops and other indoor public places (≥ 5 vs. 0/week: 1.12, 1.02-1.23, P-trend = 0.01); these associations were not substantially attenuated by adjustment for COVID-19 disease severity. CONCLUSIONS: Higher alcohol consumption and lower light physical exercise represent new modifiable risk factors for SARS-CoV-2 infection. Recognised associations between South Asian ethnic origin and obesity and higher risk of SARS-CoV-2 seropositivity were independent of other sociodemographic, behavioural, nutritional, clinical, and pharmacological factors investigated. Among seropositive participants, higher titres of anti-Spike antibodies in people of South Asian ancestry and in obese people were not explained by greater COVID-19 disease severity in these groups.


Subject(s)
COVID-19 , SARS-CoV-2 , Adult , Antibodies, Viral , Antibody Formation , COVID-19 Vaccines , Humans , Longitudinal Studies , Prospective Studies , United Kingdom , Vaccination
5.
Thorax ; 77(9): 900-912, 2022 09.
Article in English | MEDLINE | ID: covidwho-1541926

ABSTRACT

BACKGROUND: Risk factors for severe COVID-19 include older age, male sex, obesity, black or Asian ethnicity and underlying medical conditions. Whether these factors also influence susceptibility to developing COVID-19 is uncertain. METHODS: We undertook a prospective, population-based cohort study (COVIDENCE UK) from 1 May 2020 to 5 February 2021. Baseline information on potential risk factors was captured by an online questionnaire. Monthly follow-up questionnaires captured incident COVID-19. We used logistic regression models to estimate multivariable-adjusted ORs (aORs) for associations between potential risk factors and odds of COVID-19. RESULTS: We recorded 446 incident cases of COVID-19 in 15 227 participants (2.9%). Increased odds of developing COVID-19 were independently associated with Asian/Asian British versus white ethnicity (aOR 2.28, 95% CI 1.33 to 3.91), household overcrowding (aOR per additional 0.5 people/bedroom 1.26, 1.11 to 1.43), any versus no visits to/from other households in previous week (aOR 1.31, 1.06 to 1.62), number of visits to indoor public places (aOR per extra visit per week 1.05, 1.02 to 1.09), frontline occupation excluding health/social care versus no frontline occupation (aOR 1.49, 1.12 to 1.98) and raised body mass index (BMI) (aOR 1.50 (1.19 to 1.89) for BMI 25.0-30.0 kg/m2 and 1.39 (1.06 to 1.84) for BMI >30.0 kg/m2 versus BMI <25.0 kg/m2). Atopic disease was independently associated with decreased odds (aOR 0.75, 0.59 to 0.97). No independent associations were seen for age, sex, other medical conditions, diet or micronutrient supplement use. CONCLUSIONS: After rigorous adjustment for factors influencing exposure to SARS-CoV-2, Asian/Asian British ethnicity and raised BMI were associated with increased odds of developing COVID-19, while atopic disease was associated with decreased odds. TRIAL REGISTRATION NUMBER: ClinicalTrials.gov Registry (NCT04330599).


Subject(s)
COVID-19 , COVID-19/epidemiology , Cohort Studies , Humans , Longitudinal Studies , Male , Prospective Studies , Risk Factors , SARS-CoV-2 , United Kingdom/epidemiology
6.
JCI Insight ; 6(24)2021 12 22.
Article in English | MEDLINE | ID: covidwho-1501860

ABSTRACT

SARS-CoV-2 promotes an imbalanced host response that underlies the development and severity of COVID-19. Infections with viruses are known to modulate transposable elements (TEs), which can exert downstream effects by modulating host gene expression, innate immune sensing, or activities encoded by their protein products. We investigated the impact of SARS-CoV-2 infection on TE expression using RNA-Seq data from cell lines and from primary patient samples. Using a bioinformatics tool, Telescope, we showed that SARS-CoV-2 infection led to upregulation or downregulation of TE transcripts, a subset of which differed from cells infected with SARS, Middle East respiratory syndrome coronavirus (MERS-CoV or MERS), influenza A virus (IAV), respiratory syncytial virus (RSV), and human parainfluenza virus type 3 (HPIV3). Differential expression of key retroelements specifically identified distinct virus families, such as Coronaviridae, with unique retroelement expression subdividing viral species. Analysis of ChIP-Seq data showed that TEs differentially expressed in SARS-CoV-2 infection were enriched for binding sites for transcription factors involved in immune responses and for pioneer transcription factors. In samples from patients with COVID-19, there was significant TE overexpression in bronchoalveolar lavage fluid and downregulation in PBMCs. Thus, although the host gene transcriptome is altered by infection with SARS-CoV-2, the retrotranscriptome may contain the most distinctive features of the cellular response to SARS-CoV-2 infection.


Subject(s)
COVID-19/genetics , Endogenous Retroviruses/genetics , Long Interspersed Nucleotide Elements/genetics , A549 Cells , Cell Line , Chromatin Immunoprecipitation Sequencing , Computational Biology , Coronavirus Infections/genetics , DNA Transposable Elements/genetics , Down-Regulation , Host Microbial Interactions/genetics , Humans , In Vitro Techniques , Influenza A virus , Influenza, Human/genetics , Middle East Respiratory Syndrome Coronavirus , Parainfluenza Virus 3, Human , RNA-Seq , Respiratory Syncytial Virus Infections/genetics , Respiratory Syncytial Viruses , Respirovirus Infections/genetics , Retroelements/genetics , Severe acute respiratory syndrome-related coronavirus , SARS-CoV-2 , Severe Acute Respiratory Syndrome/genetics , Transcriptome , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL